
STAT COE-Report-05-2015

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Scientific Test & Analysis
Techniques for Software Testing

Authored by:

Francisco Ortiz, PhD

17 April 2015

Revised 11 October 2018

The goal of the STAT COE is to assist in developing rigorous, defensible test

strategies to more effectively quantify and characterize system performance

and provide information that reduces risk. This and other COE products are

available at www.AFIT.edu/STAT.

file://///FSV-AFIT-823/USERS/fortiz/STAT/01-HOT/BP%20-%20STAT%20for%20Software%20Testing/www.AFIT.edu/STAT

STAT COE-Report-05-2015

Table of Contents

Executive Summary ... 2

Introduction and Background ... 2

Software Testing Definitions ... 2

STAT Process ... 3

Performance Measures in Software Testing ... 3

Continuous and Stochastic Measures ... 3

Qualitative Measures .. 4

Binary and Deterministic Measures .. 5

Tools and Approaches ... 7

Combinatorial Designs .. 7

Risk Based Designs .. 10

Using Combinatorial and Risk Based Designs Together .. 12

Conclusion ... 13

References .. 13

Revision 1, 11 Oct 2018: Formatting and minor typographical/grammatical edits.

STAT COE-Report-05-2015

Page 2

Executive Summary
Defense systems in development are increasingly becoming software dependent. It has been estimated

that more than 50% of software development time will be used for testing (Kuhn et al., 2010).

Developing efficient, yet rigorous test strategies for software intensive systems is paramount to mitigate

cost growth and schedule slips. This best practice addresses how scientific test & analysis techniques

(STAT) can be applied to software testing. The underlying STAT process (Plan, Design, Execute, and

Analyze) remains the same no matter what system is under test. What can differ, however, are the tools

used within the process, particularly in the design and analyze phases. The reason these tools differ is

due to the nature of the performance measures (e.g., binary and deterministic rather than continuous

and random) and how the risk associated with a designed experiment is measured (e.g., based on

coverage of operational space rather than the error associated with inference). Two test design

approaches that have been used frequently in the software testing field are combinatorial and risk

based designs. It is not only imperative to understand how these tools and approaches work, but also to

understand the environment/scenario in which their use is appropriate.

Keywords: Combinatorial designs, factor covering arrays, design of experiments

Introduction and Background

Software Testing Definitions
Software testing is the process of evaluating a system or its components with the intent to determine if

the software satisfies specified requirements. ANSI/IEEE 1059 (1993) defines software testing as “a

process of analyzing a software item to detect differences between existing and required conditions,

that is defects/errors/bugs, and to evaluate the features of the software item.” So essentially, software

testing can be viewed as an exhaustive functional test of a system by executing all possible combinations

of inputs within a system.

In the software testing community, the term “positive” and “negative” testing is often used to describe

the goals of testing. Positive testing can be viewed as testing the “shall do” functions of a system. Given

the correct inputs, we want to make sure software works as expected. Tests for a physical system

usually have this same objective. Negative testing examines the “shall NOT do” functions of a system.

The goal in negative testing is to make sure the system does not do something it should not do. For

example, suppose we test a student web portal that allows students to see their grades. We would want

to make sure the system does not grant the students permission to change their grades. Negative

testing answers the question: Given incorrect inputs, does the system behave in an unexpected way?

Negative testing is somewhat unique to software testing. When testing physical systems, we typically

are not interested in trying to trick or break a system by providing inputs outside standard operating

conditions. Including these types of inputs leads to an expansion of test scope and more consideration

and more exploration of the input space must be taken to thoroughly vet the system under test.

STAT COE-Report-05-2015

Page 3

STAT Process
Regardless of the system under test, the overall STAT process is the same; what will differ across

systems are some of the tools used within the process. The STAT methodology (shown in Figure 1) is an

iterative process that begins with the requirement and proceeds through the generation of test

objectives, designed experiments, and analysis plans all focused on definitively addressing the

requirement. For a detailed description of the STAT process, see Guide to Developing an Effective STAT

Test Strategy (2017).

Figure 1: The STAT Process

Performance Measures in Software Testing
Understanding the nature of the performance measures (responses) being collected helps determine

the correct tools and approach to add rigor in testing the system. In the following subsections, we

briefly introduce some examples of performance measures that can be used to assess a software-

intensive system.

Continuous and Stochastic Measures

If the performance measure in the software system is continuous and there is some variation in the

system, even a small amount, then the testing approach and tools used are the same as those used

when testing a physical system. Some examples of continuous and stochastic performance measures for

software intensive system are message completion rate (%) and message latency (seconds). In these

cases, we recommend using design of experiments (DOE) to build the test cases/runs and then perform

STAT COE-Report-05-2015

Page 4

linear regression analysis with statistical intervals to build a model and estimate/predict performance

across the operational space.

For example, suppose we want to test the requirement that message completion rate never falls below

80% across the operational space. A test design would vary potentially influential factors, say number of

concurrent users and file size, to see if there are areas in the operational space where performance is

below specification (<80%). The results from a test could be a regression model like the one shown in

Figure 2 that shows how performance varies as a function of the input factors in both a response surface

plot (Figure 2a) and contour plot (Figure 2b). Note that both number of users and file size are shown in

coded units and therefore range from −1 to 1.

Figure 2: Regression model for message completion rate as a function of number of users and file size

a) response surface and b) contour plot

Notice because the input space is continuous, a data point that is failing to meet the specification

implies that the surrounding area (neighborhood) may fail as well. You can see that that the system

begins failing specifications when file size and the number of users are at their high settings. For more

information on using DOE and statistical analysis to assess system requirements, see Burke et al. (2017).

Qualitative Measures

There will be circumstances in which qualitative measures are the only way to assess a software-

intensive system. For example, consider a situation in which the goal of a test is to compare a new

software user interface (UI) versus the legacy UI to determine if it improves usability. One approach to

collect data would be to survey users. The survey must have carefully worded statements and ask the

user how much they agree with the statement based on a Likert-scale such as the one shown in Figure 3.

STAT COE-Report-05-2015

Page 5

Figure 3: Example of a Likert-scale

There is a science in creating a sound survey. Please see Grier (2013) for a best practice on using survey

for test and evaluations.

Binary and Deterministic Measures

More often, the intent of a software test is to find defects/errors/bugs in a system. The performance

measure in this case is actually deterministic and binary (pass/fail). To illustrate, consider the following

Microsoft Word example taken from Kuhn (2009). For this test, the goal is to examine all font effects

(shown in Figure 4) and ensure that they get displayed properly on the screen.

Figure 4: Microsoft font effects

STAT COE-Report-05-2015

Page 6

Each input is binary (on and off). If we want to test every possible combination, we would need 211

(2048) trials. If we were to test only 2-way combinations of the inputs there would be 121 tests to

examine (see Figure 5).

Figure 5: Operation space for font effects test

Notice that the data types for input factors are categorical and there is no relationship between factor

levels/settings. A failure at one test point does not mean that its nearest neighbors will fail as well

compared to the example shown in Figure 3. The input factors here can be viewed as switches and we

are trying to find which combinations of switches result in a failure.

Due to the different nature of the data being collected, traditional methods/measures used to evaluate

a designed experiment do not directly apply. Statistical power and confidence are two common

measures used to evaluate the adequacy of a test design when the response is continuous and

stochastic. Power and confidence are calculations of the probability of making an incorrect inference

about the system under test (Type II and Type I error, respectively). These measures assume a stochastic

system which obviously is not the case with some software tests. When the performance measure is

deterministic, test design evaluation is based more on the concept of coverage. For cases like this, we

recommend employing a factor covering array design (e.g., combinatorial t-way or risk based design) to

efficiently and quickly identify errors in the system. We discuss these types of designs in the following

sections.

STAT COE-Report-05-2015

Page 7

Tools and Approaches

Combinatorial Designs
In software testing, any particular combination of input factor settings could trigger a fault. Therefore,

every possible combination of input factors would have to be investigated in order to ensure all faults or

bugs have been detected. Consider the following flight reservation website example. Table 1 lists the

input factors and the number of levels/settings that need to be tested to perform a full evaluation of the

operational space. There are 7,338,354,278,400 possible combinations of input factors. This is obviously

time consuming, costly, and impractical to execute.

Table 1: Input space for a flight reservation website example.

Luckily, a NIST study (Kuhn et al., 2009) based on historic data collected from various systems of varying

complexity found that most faults are caused by the interactions between only a few factors. Figure 6

shows the cumulative percentage of faults found versus the level of interactions between factors for

various systems in the NIST study. Over 80% of faults were found by looking at just 3-way interactions,

over 90% with 4-way interactions and virtually all with 6-way interactions. The results of this study imply

STAT COE-Report-05-2015

Page 8

that there are opportunities for efficient testing in software testing as not all factor interactions need to

be investigated.

Figure 6: Historical data from various systems showing the cumulative percent of software failures

due to t-way interactions of input factors (Kuhn et al., 2009)

Combinatorial designs attempt to maximize test coverage by combining factor levels to cover all the t-

way combinations in the minimum number of test runs. To illustrate what these designs look like,

consider the Microsoft Word example introduced earlier. Let’s start off by looking at just two input

factors “Shadow” and “Outline” as shown in Figure 7. A value of 1 means that the check box for that

font effect was selected while a value of 0 means it was not selected. If we want to look at all 2-way

interactions for these two factors, then we need to investigate all
2

2 cases. There is no other way to be

more efficient for a test with just two factors.

Figure 7: Two factor combinatorial design

2 variables - All Combinations

Case Sh
ad

o
w

O
u

tl
in

e

1 1 1

2 1 0

3 0 1

4 0 0

STAT COE-Report-05-2015

Page 9

Let’s expand this problem by adding “Emboss” as a new factor (see Figure 8). To look at all combinations

between the three factors (3-way interactions), we would need 3
2 8 runs.

Figure 8: Potential three factor combinatorial design

However, if we are only interested in 2-way interactions, then the design can be reduced to just 4 runs.

Figure 9 shows how the 2-way interactions between the three input factors are all covered in 4 runs.

Figure 9: Three factor design covering all two way combinations.

For the same amount of runs in the two-factor example, we can examine 3 factors and their 2-way

interactions.

Now consider all 11 factors as shown in Figure 10, remembering that to test all combinations would

require 1024 runs. All 2-way combinations can be covered in just 10 runs which, based on Kuhn’s NIST

study, could translate in finding >60% of all faults in the system.

STAT COE-Report-05-2015

 Page
10

Figure 10: Eleven factor design covering all two-way combinations in just 10 runs

For the flight reservation problem mentioned earlier, exhaustive testing would require

7,338,354,278,400 runs. By comparison, all 2-way interactions could be tested in just 41 runs! All 4-way

interactions which, based on historic data would find over 90% of faults, can be done in just 1,421 runs.

This is a huge amount of savings in terms of time and resources needed to vet a system.

The following is a list of some software available to easily create these designs.

 ACTS: Available at http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html,

Java based, free of charge

 Hexawise: Available at www.hexawise.com , web-based, free trial available

 JMP 14: Available at www.jmp.com, free trial available

Risk Based Designs

A risk based design applies decision analysis in determining which test cases should be run and in what

order. This approach has been advocated by the Office of the Secretary of Defense (OSD) in a 2010

memo, Guideline for Operational Test and Evaluation of Information and Business Systems. The

approach prioritizes what features of a software system and their associated scenarios/cases should be

run based on a weighted average of various risk attribute scores. These scores place emphasis on higher

level capabilities or functionality required by the software system versus testing each individual

requirement. The goal here is to fit test time to given resource constraints.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://www.hexawise.com/
http://www.jmp.com/

STAT COE-Report-05-2015

 Page
11

Suppose we are testing a company’s pay and personnel system. Correct salary payments may be more

important than correct accrued vacation time or the correct employee start date. Of course, each one of

these features is important, but given a very constrained time window to perform testing, the customer

would want the salary payment requirements tested thoroughly first.

Let’s use a simplified example. Suppose there are 50 requirements that could be tested in this pay and

personnel system. For each requirement, stakeholders and subject matters experts will provide a score

based on:

 Business Criticality – measures how critical the capability is to the business process

 Failure Probability – indicates how likely a test is to fail based on the capability

 Functional Complexity – indicates the technical difficulty in executing the function (i.e., process

or computational steps)

The weighted average of these 3 scores is the overall “risk” score for that particular requirement. We

then order the requirements based on that score (see Figure 11). If for example, testing was truncated

due to time and we only examined the top 26 requirements we can quantify the risk covered (e.g., 80%

in the example shown in Figure 11).

Figure 11: Cumulative risked covered using a risk based design

It is important to note that this approach requires stakeholders to agree upon a list of important

attributes. Business criticality, failure probability, and functional complexity are among standard

measures used in industry, but this is not an exhaustive list by any means.

STAT COE-Report-05-2015

 Page
12

Using Combinatorial and Risk Based Designs Together

Using risk based and combinatorial designs together can be a very powerful tool in introducing

defensible rigor to software testing. A risk based design could be used to rank requirements and then

evaluating each requirement could entail generating one or more combinatorial test designs. For

example, let’s say there are 50 requirements and each requirement is evaluated on a scale from 1 to 10

based on business criticality, failure probability, and functional complexity where a high score indicates

high risk. Table 2 shows an example of this scoring for the 50 requirements. The requirements have

been sorted from highest risk to lowest risk.

Table 2: Example using both combinatorial and risk based designs together (27 of 50 requirements
shown)

What level of rigor or strength should be associated with the underlying combinatorial design? One

solution is to use the requirement risk scores to help answer that question. Requirements with high risk

scores (Column “Risk Category”) would suggest using a combinatorial design that would cover higher t-

way interactions (e.g., all 4-way or 5-way interactions between input factors), medium risk scores use

just 3-way interactions, and low risk scores could probably be satisfied with just 2-way interactions. Now

say, schedule constraints leads to testing being stopped after requirement 26, and only 20 of the 26 runs

of the combinatorial test design were executed (see line 26 in Table 2). We only covered 76.9% of all 3-

way interactions for that individual requirement. The cumulative risk covered for the entire test strategy

STAT COE-Report-05-2015

 Page
13

is calculated to be 84.5%. The end result of using this approach is not only a test strategy that optimizes

resources and time within constraints, but also a quantifiable measure of risk coverage.

Conclusion

STAT can be applied to software testing. Regardless of the system under test, this STAT process should

be followed using these basic steps:

1. Decompose requirements.

2. Identify test objectives.

3. Create test designs that quantify risk.

4. Perform analysis that results in decision quality information.

Software testing may require some unique tools to be utilized due to the nature of the performance

measure of interest and the expanded scope of the test objectives. Combinatorial designs and risk based

designs may be better suited for some software tests since they are based more on obtaining coverage

of the operational space rather than the error associated with statistical inference. Combinatorial

designs aim to maximize test coverage by creating an optimal (minimum run) design that covers all t-

way combinations. Risk based designs use a decision analysis approach to determine and prioritize

which test cases should be executed first. Both approaches can be used in conjunction to better

communicate the rigor associated with the overall test strategy of a program.

References
Burke, Sarah et al. “Guide to Developing an Effective STAT Test Strategy V5.0,” Scientific Test and

Analysis Techniques Center of Excellence (STAT COE), Dec 2017.

Gilmore, J. Michael. "A statistically rigorous approach to test and evaluation (T&E)." ITEA Journal, vol. 34

2013, pp. 225-229.

Grier, Rebecca A., “Surveys in Test and Evaluation”, IDA Document NS D-4934. 2013.

Institute of Electrical and Electronics Engineers. Guide for Software Verification and Validation Plans.

IEEE Std 1059-1993.

Kuhn, Rick, et al. “Combinatorial Software Testing.” Computer (IEEE Computer Society), vol. 42, no. 7,

2009, pp. 94–96., doi:10.1109/mc.2009.253.

Kuhn, D.R, Kacker, Raghu N., Lei, Yu, “Advanced Combinatorial Test Methods for System Reliability”,

Reliability Society Annual Technical Report, 2010.

Kuhn, D.R, Wallace, D.R, Gallo, Jr., AJ, “Software Fault Interactions and Implications for Software

Testing,” IEEE Trans. on Software Engineering, vol. 30, no. 6, 2004.

https://www.ida.org/en/Global/Content/Publications/Publications2013/OED/NS-D-4934.aspx
http://csrc.nist.gov/groups/SNS/acts/documents/TSE-0172-1003-1.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/TSE-0172-1003-1.pdf

STAT COE-Report-05-2015

 Page
14

National Institute of Standards and Technology, Computer Security Division,

http://csrc.nist.gov/groups/SNS/acts/index.html.

Office of the Secretary of Defense, “Guideline for Operational Test and Evaluation of Information and

Business Systems”, Sept. 2010

http://csrc.nist.gov/groups/SNS/acts/index.html

